Scripting Resources for DigitalMicrograph™

banner

Dave Mitchell's DigitalMicrograph™ Scripting Website

Home | Scripts | Examples | Functions | Recent Updates | Tutorials | Resources | Publications | Consulting | Projects | Contact & Bio |PyJEM| Search

 

Edge Direction Colour Map
Function
Carries out Gaussian blurring to reduce noise sensitivity, then locates the edges using a Sobel Filter. The edge image is then thresholded and the binary result colour coded to identify features lying within ±22.5° of 0, 45, 90 and 135°.
Version

version:20111105, v1.0

Author
D. R. G. Mitchell
Acknowledgements
The Gaussian blurring function is based on one by Andrey Chuvilin
Comments
Not sure if this is of much practical use, athough it does demonstrate the use of the tert() function for both thresholding and colouring images. It was developed as part of a Canny edge finding routine.
System Requirements
Should be compatible with all recent versions of DigitalMicrograph. Tested with GMS 1.8.4 and 2.1.
Known Issues
-
Supported
Yes
Included Files
Main script file.
Source Code

// Script to create an edge direction map, coloured to show the direction of the edges.

// D. R. G. Mitchell, 5th Nov. 2011

// adminnospam@dmscripting.com (remove the nospam to make this address work)

// version:2011105, v1.0

// www.dmscripting.com

 

 

// function to create and apply a Gaussian blurring function to an imaage.

// This based on Andrey Chuvlin's similar function. Slight blurring prior to edge

// finding reduces the sensitivity to noise.

 

// Sourceimg is the image to be filtered; standard deviation is that of the Gaussian

// kernel: 1=minimal blurring, 3=mild blurring, 10=severe blurring.

// Blurring the image before edge detection reduces the sensitivity to noise.

 

image GaussianConvolution(image sourceimg, number standarddev)

{

// Trap for a standard deviation value of zero entered

if(standarddev==0) return sourceimg

// get the size of the source image. If it is not a power of 2 in dimension

// warp it so that it is

 

number xsize, ysize, div2size, expandx, expandy, logsize

getsize(sourceimg, xsize, ysize)

expandx=xsize

expandy=ysize

 

// Check the x axis for power of 2 dimension - if it is not, round up to the next size

// eg if it is 257 pixels round it up to 512.

 

logsize=log2(xsize)

if(mod(logsize,1)!=0) logsize=logsize-mod(logsize,1)+1

expandx=2**logsize

 

// Check the y axis for power of 2 dimension - if it is not, round up to the next size

// eg if it is 257 pixels round it up to 512.

 

logsize=log2(ysize)

if(mod(logsize,1)!=0) logsize=logsize-mod(logsize,1)+1

expandy=2**logsize

 

// Use the Warp function to stretch the image to fit into the revised dimensions

 

image warpimg=realimage("",4,expandx, expandy)

warpimg=warp(sourceimg, icol*xsize/expandx, irow*ysize/expandy)

 

// Create the gaussian kernel using the same dimensions as the expanded image

 

image kernelimg:=realimage("",4,expandx,expandy)

number xmidpoint=xsize/2

number ymidpoint=ysize/2

kernelimg=1/(2*pi()*standarddev**2)*exp(-1*(((icol-xmidpoint)**2+(irow-ymidpoint)**2)/(2*standarddev**2)))

 

// Carry out the convolution in Fourier space

 

compleximage fftkernelimg:=realFFT(kernelimg)

compleximage FFTSource:=realfft(warpimg)

compleximage FFTProduct:=FFTSource*fftkernelimg.modulus().sqrt()

realimage invFFT:=realIFFT(FFTProduct)

 

// Warp the convoluted image back to the original size

 

image filter=realimage("",4,xsize, ysize)

filter=warp(invFFT,icol/xsize*expandx,irow/ysize*expandy)

return filter

}

 

// function to create a colour map showing the direction of the edges found by Sobel filtering.

// The horizontal and vertical derivatives are computed and the gradient and direction are obtained as

// G=sqrt(dx**2+dy**2) and theta=atan2(dy,dx) respectively.

 

// The edge direction map is then rounded up/down to the nearest angle of 0, 45, 90 and 135 degs.

 

// The gradient image shows the edges (Sobel filtering). This is converted into a binary image by thresholding. The

// edges are then colour coded according to their orientation in one of the four angles (above).

 

// Sourceimg is the image to be filtered; threshold is the numerical value of the threshold.

// If set to zero, the mean intensity value of the edgegradient image will be used (usually about right).

 

image createedgedirectionmap(image sourceimg, number threshold)

{

 

// use the Sobel filter to compute the horizontal (dy) and vertical (dx) derivatives

number scalex, scaley, xsize, ysize

string unitstring

getscale(sourceimg,scalex, scaley)

getunitstring(sourceimg, unitstring)

getsize(sourceimg, xsize, ysize)

 

realimage edgegradient=exprsize(xsize,ysize,1)

realimage edgedirection=exprsize(xsize,ysize,1)

realimage dx=exprsize(xsize,ysize,1)

realimage dy=exprsize(xsize,ysize,1)

 

dx= offset(sourceimg,-1,-1) - offset(sourceimg,1,-1) + \

2*(offset(sourceimg,-1,0) - offset(sourceimg,1,0)) + \

offset(sourceimg,-1,1) - offset(sourceimg,1,1)

 

dy= offset(sourceimg,-1,-1) - offset(sourceimg,-1,1) + \

2*(offset(sourceimg,0,-1) - offset(sourceimg,0,1)) + \

offset(sourceimg,1,-1) - offset(sourceimg,1,1)

 

edgegradient=sqrt(dx**2+dy**2)

edgedirection=atan2(dy, dx)

 

 

// Convert the -3.142 to +3.142 direction image from radians to degrees, running 0 to 360 (easier to work with)

 

edgedirection=(edgedirection+pi())*(180/pi())

 

// round the direction image up/down to 0, 45, 90, 135 degree angles.

// ie any point lying between 337.5 and 22.5 degs is rounded to 0 (angles

// run from 0 to 360 degrees

 

edgedirection=tert(edgedirection>337.5 || edgedirection<=22.5, 0, edgedirection)

edgedirection=tert(edgedirection>22.5 && edgedirection<=67.5, 45, edgedirection)

edgedirection=tert(edgedirection>67.5 && edgedirection<=112.5, 90, edgedirection)

edgedirection=tert(edgedirection>112.5 && edgedirection<=157.5, 135, edgedirection)

 

edgedirection=tert(edgedirection>157.5 && edgedirection<=202.5, 0, edgedirection)

edgedirection=tert(edgedirection>202.5 && edgedirection<=247.5, 45, edgedirection)

edgedirection=tert(edgedirection>247.5 && edgedirection<=292.5, 90, edgedirection)

edgedirection=tert(edgedirection>292.5 && edgedirection<=337.5, 135, edgedirection)

 

 

// Create a thresholded image on the basis of the gradient image - after thresholding and

// then colour coding according to the edge's direction

 

// define the colours for the various angles

 

rgbnumber red=rgb(255,0,0) // 0 degs

rgbnumber green=rgb(0,255,0) // 45 degs

rgbnumber blue=rgb(0,0,255) // 90 degs

rgbnumber yellow=rgb(255,255,0) // 135 degs

 

 

// Threshold the gradient image on the supplied threshold value (if 0 then the image's mean value is used)

// and then colour the thresholded image according to the direction

 

if(threshold==0) threshold=mean(edgegradient)

rgbimage thresholdimg:=rgbimage("",4,xsize, ysize)

 

thresholdimg=tert(edgegradient>=threshold && edgedirection==0, red, thresholdimg) // 0 degs are red

thresholdimg=tert(edgegradient>=threshold && edgedirection==45, green, thresholdimg) // 45 degs are green

thresholdimg=tert(edgegradient>=threshold && edgedirection==90, blue, thresholdimg) // 90 degs are blue

thresholdimg=tert(edgegradient>=threshold && edgedirection==135, yellow, thresholdimg) // 135 degs are yellow

 

return(thresholdimg)

 

}

 

 

// Main program

 

// source the front-most image and the standard deviation for Gaussian blurring

 

number xsize, ysize, standarddev, threshold

image front:=getfrontimage()

getsize(front, xsize, ysize)

string imgname=getname(front)

 

if(!getnumber("Select the standard deviation of the Gaussian kernel:",3,standarddev)) exit(0)

 

// Apply the Gaussina blur (reduce edge finding sensitivity to noise) and display the result

 

image blur:=GaussianConvolution(front, standarddev)

 

// Source the threshold value for converting the Sobel filtered image into an edge map.

// Note: when the threshold is set to zero the above function will use the edgegradient image's mean

// as the threshold value. The thresholded edges will then be coloured to show the direction thereof.

 

if(!getnumber("Select the intensity threshold (0 uses image mean):",0,threshold)) exit(0)

image edgegradientmap=createedgedirectionmap(blur, threshold)

setname(edgegradientmap, imgname+" - Edge Gradient Map")

showimage(edgegradientmap)

setwindowposition(edgegradientmap, 172,54)