Scripting Resources for DigitalMicrograph™

banner

Dave Mitchell's DigitalMicrograph™ Scripting Website

Home | Scripts | Examples | Functions | Recent Updates | Tutorials | Resources | Publications | Consulting | Projects | Contact & Bio |PyJEM| Search

 

Cross correlate ROI with image
Function
Takes an image area defined by a region of interest (ROI) and cross correlates it with the whole image.
Version
version:20160611, v1.1
Author
D. R. G. Mitchell
Acknowledgements
 
Comments

Use this image to find the motif within the ROI elsewhere within the image. The script creates a threshold and coloured cross correlation image. If the source image is a high resolution lattice image, such things as defects may be more apparent within the resulting cross correlation. The application of a temperature colour table and thresholding to remove all negative values can be controlled by setting flags within the script. This script contains a function which creates a temperature colour lookup table, which is very useful at highlighting subtle variations in intensity - often barely visible in the corresponding grey scale image. For information on now to apply alternative colour lookup tables (CLUTs) to images, see the script Apply CLUT.

System Requirements
Tested on GMS 2.x but should be compatible with all versions of GMS - see the Known Issues below.
Known Issues

GMS 2 includes the ability to do fast Fourier transforms on non-square/power of 2 sized images. Here there is also no requirement for the ROI to be square/power of 2 in size. However, if you are using this script on GMS 1.x, both the image and the ROI will have to be of that form, otherwise the script will report an error.

Supported
Yes
Included Files
Source code
Source Code

// Cross correlate ROI with image

 

// Takes a region of interest in an image and uses it as a motif to look for similar regions in the rest

// of the image, using cross correlation. For versions of GMS prior to 2, the image will need to be square

// and a power of 2 in size (eg 1024 x 1024). For later versions of GMS the image can be any shape.

 

// A small (10-20% of the image size) region of interest must be present on the front-most image.

// This can be any size shape, but the final motif image will be a circular region from within that ROI.

// The radius of the circular region is the minimum of the half the smallest side length of the ROI.

// The motif image excises the ROI, offsets it to be centred and applies a Butterworth filter to

// it so that the edges of the ROI are feathered down to zero to eliminate sharp edge artefacts.

// This feathered motif image is then cross correlated with the original

// image. Regions which appear bright are where the structure in the motif and the image correlate

// strongly. This may be useful for finding defects or distorted regions of lattice images etc.

 

// D. R. G. Mitchell, adminnospam@dmscripting.com (remove the nospam to make this address work)

// version:20160611, v1.1, June 2016, www.dmscripting.com

 

// Function to create a Temperature colour lookup table (CLUT)

 

image CreateTemperatureCLut()

{

image customclut=rgbimage("", 4,256,1)

 

customclut=tert(icol<51, rgb(0,0,((icol/51)*255)),customclut) // black to blue rgb (0,0,0) -> rgb(0,0,1)

customclut=tert(icol>=51 && icol<102, rgb(0, (((icol-51)/51)*255), 255-(((icol-51)/51)*255)), customclut) // blue to green

customclut=tert(icol>=102 && icol<153, rgb(((icol-102)/51)*255, (255-(((icol-102)/51)*255)), 0), customclut) // green to red

customclut=tert(icol>=153 && icol<204, rgb(255, (((icol-153)/51)*255),0), customclut) // red to yellow

customclut=tert(icol>=204 && icol<=255, rgb(255,255,(((icol-204)/51)*255)), customclut) // yellow to white

return customclut

}

 

 

// Function to create a butterworth filter. Imgxsize and imgysize are the sizes of the filter image

// bworthorder is a numerical value (1-6 is good), which defines the rate at which the edge of the filter

// decays to zero. Low values give shallow slopes. zeroradius specifies the radius of the filter.

 

image butterworthfilter(number imgxsize, number imgysize, number bworthorder, number zeroradius)

{

// See John Russ's Image Processing Handbook, 2nd Edn, p 31

image butterworthimg=realimage("",4,imgxsize, imgysize)

butterworthimg=0

 

 

// note the halfpointconst value sets the value of the filter at the halfway point

// ie where the radius = zeroradius. A value of 0.414 sets this value to 0.5

// a value of 1 sets this point to root(2)

 

number halfpointconst=0.414

butterworthimg=1/(1+halfpointconst*(iradius/zeroradius)**(2*bworthorder))

return butterworthimg

}

 

 

// Main program starts here

 

 

// These two flags set the behaviour of the script

 

number clipnegativevalues =1 // Set this to 0 (no) or 1 (yes) to clip out all negative values from the final image

number applyclut=1 // set this to 0 (no) or 1 (yes) to apply a colour lookup table to the final image

 

 

 

// Source the frontimage

 

number nodocs=countdocumentwindowsoftype(5)

if(nodocs<1)

{

showalert("Ensure an image with a small region of interest (ROI) is displayed.",2)

exit(0)

}

image front:=getfrontimage()

 

 

// Check that an ROI is present on the image

 

imagedisplay frontdisp=front.imagegetimagedisplay(0)

number norois=frontdisp.imagedisplaycountrois()

if(norois<1)

{

showalert("Ensure a square ROI defines a region of typical structure.",2)

exit(0)

}

image roi:=getfrontimage()[]

 

 

// Get some information on the ROI

 

roi theroi=frontdisp.imagedisplaygetroi(0)

number roit, roil, roib, roir

theroi.roigetrectangle(roit, roil, roib, roir)

number roicntrx=((roir-roil)/2)+roil

number roicntry=((roib-roit)/2)+roit

 

number imgx, imgy, roix, roiy

getsize(front, imgx, imgy)

getsize(roi, roix, roiy)

 

number imgcntrx=imgx/2

number imgcntry=imgy/2

 

 

// Move the ROI to the centre of an otherwise empty image

 

number offsetx=roicntrx-imgcntrx

number offsety=roicntry-imgcntry

image markup=imageclone(front)*0

markup=offset(front, offsetx, offsety)

 

number minoffset, maxoffset

minmax(markup, minoffset, maxoffset)

markup=(markup-minoffset)/(maxoffset-minoffset)

 

 

// Create a butterworth mask for the above image

 

number butterworthorder=3 // values between 1 and 6 are sensible. 1 produces a very gentle slope to the

// feathering at the edge of the butterworth filter. 3 is a fairly steep roll off and 6 is a very abrupt edge

 

number roixradius=(roir-roil)/2

number roiyradius=(roib-roit)/2

number zeroradius=min(roixradius, roiyradius)

image bwfilter=butterworthfilter(imgx, imgy, butterworthorder, zeroradius)

 

 

// Create a motif image and cross correlate it with the original image

 

image motif=bwfilter*markup

 

image frontscale=imageclone(front)

number frontmin, frontmax

minmax(frontscale, frontmin, frontmax)

frontscale=(frontscale-frontmin)/(frontmax-frontmin)

image crosscorr=crosscorrelate(motif, frontscale)

 

string imgname=getname(front)

setname(crosscorr, "Cross Correlation of "+imgname)

 

imagecopycalibrationfrom(crosscorr, front)

taggroup fronttags=front.imagegettaggroup()

taggroup cctags=crosscorr.imagegettaggroup()

taggroupcopytagsfrom(cctags, fronttags)

 

 

// Rotate the image and display in temperature colour

 

crosscorr=rotate(crosscorr, pi()) // the cross correlation is rotated with respect to the original

if(clipnegativevalues!=0) crosscorr=tert(crosscorr<0,0,crosscorr) // clip out negatives if the flag is set to 1

// set at the start of the main script

 

showimage(crosscorr)

imagedisplay ccdisp=crosscorr.imagegetimagedisplay(0)

image clut=CreateTemperatureCLut()

if(applyclut!=0) ccdisp.imagedisplaysetinputcolortable(clut) // colour the image if the flag has been set to 1

// at the start of the program